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We present an adiabatic approach to the design of entangling quantum operations with two electron spins
localized in separate InAs/GaAs quantum dots via the Coulomb interaction between optically excited localized
states. Slowly varying optical pulses minimize the pulse noise and the relaxation of the excited states. An
analytical “dressed-state” solution gives a clear physical picture of the entangling process and a numerical
solution is used to investigate the error dynamics. For two vertically stacked quantum dots we show that, for
a broad range of dot parameters, a two-spin state with concurrence C�0.85 can be obtained by four optical
pulses with durations �0.1–1 ns.
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Adiabatic passage uses the slow variation of a system’s
Hamiltonian to select a particular quantum path while avoid-
ing unintended dynamics. Controlled adiabatic evolution of
the ground state has been proposed as a model for quantum
computation.1 Stimulated Raman adiabatic passage �STI-
RAP� �Ref. 2� can be used to transfer populations or coher-
ences between quantum states through a “dark state” which
efficiently suppresses relaxation. Arbitrary single-qubit op-
erations can be produced, for example, by STIRAP in a tri-
pod system3 or adiabatically controlled Raman excitation in
a � system.4 In this work we study how adiabatic control can
be used in design of optically induced two-qubit quantum
operations.

In systems with a permanent interaction between qubits, it
is known that adiabatic passage through degenerate dressed
states can also be used to construct two-qubit entangling
gates.5 However, for scalable solid-state quantum computa-
tion, it is important to keep the qubits isolated from each
other except during gating. Electron spins in semiconductor
quantum dots �QDs� are promising candidates for just such
qubits.6 They have long coherence time,7 can be manipulated
by electric gates8 or optically,9,10 and the coupling between
the qubits can be induced externally.

Significant experimental and theoretical effort has been
invested in optical manipulation of electrons in single and
coupled semiconductor QDs. Schottky diode structures with
embedded self-assembled QDs have been designed to control
the number of electrons in the dots by adjusting the external
bias voltage.11 The particular optical transitions between the
charged and the excitonic states can be addressed in these
dots by frequency and polarization selection.12 Efficient spin-
initialization schemes have been demonstrated recently using
optical pumping in the Faraday13 �magnetic field parallel to
the optical axis� and the Voigt12 �magnetic field orthogonal to
the optical axis� configurations. The Faraday14 and the Kerr15

rotations from single spins confined in QDs have been ob-
served, which should allow spin-readout and single-spin ro-
tation operations. For two-qubit quantum operations the en-
ergy level structure and the interdot coupling in vertically
aligned QD pairs have been studied.16,17

Several designs of two-qubit gates have been recently

proposed utilizing, for example, tunneling between excited
states of QDs,18 Förster-type interaction19 long-range cou-
pling through a photon bus,20 and electrostatic coupling be-
tween the excited states.21,22 These schemes are yet to be
demonstrated experimentally however. The major difficulties
are as follows:

�i� The proposals utilize properties of the QDs or device
structures which do not exist yet. For instance, two-qubit
gates in Ref. 20 utilize QDs in cavities coupled to a common
waveguide. Although such a design could potentially allow
large spatial separation of the qubits, there are no reliable
device structures yet.

�ii� The interdot coupling via, for example, electron tun-
neling between the excited orbitals or a Förster-type interac-
tion requires precise alignment of the energy levels and can-
not be controlled experimentally at the present stage of
technology.

�iii� Demonstration of a two-qubit operation is compli-
cated because of the gate structure. Although mathematically
all the two-qubit entangling gates are equivalent, their physi-
cal realization, demonstration, and implementation into a
particular quantum algorithm require different amount of re-
sources. It is particularly important when the operational
noise is a main limiting factor. For instance, demonstration
of conditional phase operation additionally involves a num-
ber of single-qubit gates that themselves are very noisy and
require a substantial experimental effort.

In this study we present a general approach to the design
of two-qubit entangling operations with uncoupled electron
spins in semiconductor QDs utilizing the Coulomb interac-
tion of transient optically excited states localized in the dots.
We show that adiabatic pulses combined with the counterin-
tuitive pulse ordering of STIRAP allows the construction of
nonlocal two-spin unitary transformations, while efficiently
suppressing population transfer out of the qubit subspace.
Compared to other two-qubit gates with spins in semicon-
ductor QDs our proposal

�i� utilizes the conventional Schottky barrier device struc-
tures within which QDs are routinely grown;

�ii� is based on the Coulomb interaction between the ex-
cited electronic states in different dots, and therefore does
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not require precise control for the energy level structure; and
�iii� provides flexibility in the gate design. In addition to

the controlled-phase gates one can construct operations re-
sulting in a coherent oscillation of two-spin state population,
which is a more accessible signature of entanglement.

As illustration we describe an operation for two spins in
separate self-assembled InAs/GaAs QDs. While for clarity
the entangling process is described in the path language, it,
in fact, represents a quantum operation made up of a product
of �iSWAP and controlled-phase gates. Combined with
single-qubit rotations4 and optical initialization,12,23 we ob-
tain a set of gates for universal quantum computation. We
employ the Voigt configuration to obtain the flexibility re-
quired to select the desired quantum paths through polariza-
tion and frequency selection. The evolution of the system is
then guided through a particular subset of quantum paths by
a sequence of adiabatic pulses. In our dressed-state picture
the scheme can be viewed as an adiabatic passage of an
arbitrary initial two-spin state through two long-lived states.
The interference between the two paths results in an effective
rotation in the spin subspace. The method proposed here can
be adapted to construct controlled-phase and controlled-NOT
gates.

In two self-assembled InAs/GaAs QDs, the direct electron
or hole tunneling between the dots may be suppressed by
selecting the dot heights and the interdot distance.16,18 Then,
because the electrons and holes are confined differently, the
intrinsic Coulomb coupling between particles in different
dots modifies the optical transition energies.16,17 We employ
this phenomenon to perform two-qubit operations. This is
similar to the dipole blockade.24 However, we do not rely on
an external electric field. This substantially simplifies the ex-
perimental setup and makes the operation less sensitive to
external noise than the proposal of Ref. 21 in which in-plane
gates were used. The particular path used for the entangling
operation is shown in Fig. 1�a�. In the ideal case of strong
Coulomb interaction, starting with the polarized state �+,+�
one obtains the maximally entangled state 1

�2
��+,+�+ i�−,−��

after an effective � /2 two-spin rotation. A longer excitation
pulse results in coherent oscillations between �+,+� and
�−,−� populations—an experimentally observable signature
of the entanglement between the spins. Schematics of the
pulse sequence and of the evolution of the appropriate
dressed states are shown in Figs. 1�b� and 1�c�. The long
optical pulses used here may be generated by modulating cw
lasers, which would provide sufficiently narrow frequency
spectra of the pulses. Coherent optical coupling of the five-
state system shown in Fig. 1�a� does not yield a dark state
unlike in the familiar � system. However, the two states we
use are long lived under two-photon resonance,25 and we can
further reduce trion relaxation by detuning the optical pulses
and by adjusting their amplitudes.

For a single QD in the Voigt configuration with two
single-electron spin states,

� � � =
1
�2

�e↓
† � e↑

†��0� , �1�

we consider only two lowest-energy negative-trion states,

�t�� =
1
�2

e↓
†e↑

†�h↓
† � h↑

†��0� , �2�

where the operators e↑,↓
† and h↑,↓

† create, respectively, an elec-
tron and a heavy hole with spin along or against the growth
direction, which we also take as the optical axis. Because of
the large confinement splitting, the heavy hole is only weakly
mixed with the light hole, and this can be easily compensated
for by adjusting polarizations of the optical fields.4 With
these restrictions, the system of two dots has 16 states. The
four lowest-energy spin states form the qubit sector. They are
separated by a gap from eight single-trion states, which are
similarly distant from four bitrion states. The interdot Cou-
lomb interaction of electrons and holes gives rise to a bind-
ing energy of the bitrion,

� = E1221
eeee + E1221

hhhh − E1221
ehhe − E2112

ehhe , �3�

where Ejkkj
abba is a two-particle Coulomb integral, e or h de-

notes electron or hole, and j=1,2 labels the dots, and we
assume that the interdot electron-hole exchange is negligible
due to the large distance. In zero magnetic field, let the tran-
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FIG. 1. �Color online� �a� Optical scheme to control the en-
tanglement between spins in two InAs/GaAs QDs in the Voigt con-
figuration. Two-dot states are denoted by kets such as �t+ ,+�, with
�� � for the spin states and �t�� for the trion states. Arrows indicate
the linear polarizations Vj

� and Hj
� for the transitions �� �↔ �t��

and �� �↔ �t�� of dot j=1,2. �b� Timing of pulses for either dot.
V�t� and H�t� are envelope functions, for which we use the same
shape, rectangular with fronts shaped as sin4��t /Tf�, for all pulses,
and the same amplitudes for both V pulses and for both H pulses.
�c� Adiabatic time evolution of the dressed-state energies. Solid
lines show the essential energies which drive the operation.
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sition energy from the qubit sector to the single-trion sector
be �tj. The single-trion-to-bitrion transition energy is shifted
by the binding energy �, thus enabling the two types of
transition to be independently addressed. Four optical fields
can thus couple the states �+,−� and �−,+� or states �+,+� and
�−,−�. In the following we use the latter pair because an
efficient initialization of the state �+,+� is possible.12

First, we develop an analytical model describing the two-
qubit gate. It assumes strong Coulomb interaction between
the trions and does not account for relaxation from the ex-
cited states. These assumptions are relaxed later using nu-
merical simulations of the system’s dynamics.

The essential process of the quantum operation can be
described by a Hamiltonian

H =�
0 V1

��t� 0 0 0

V1�t� � H1
��t� 0 0

0 H1�t� 0 H2�t� 0

0 0 H2
��t� � V2�t�

0 0 0 V2
��t� 0

� �4�

acting on the five-level system 	Fig. 1�a�
 written in the ro-
tating wave approximation and an interaction picture. The
stationary basis states of the Hamiltonian are �+,+�, �t+ ,+�,
�t+ , t−�, �−, t−�, and �−,−�. The optical fields are detuned by
� from the single-trion transitions to avoid populating the
intermediate states, while the two-photon processes are reso-
nant with the bitrion transition. For the sake of simplicity we
use the same shape for both H pulses and both V pulses. We
therefore omit the indices of the pulse envelopes in Eq. �4� in
the following discussion. The two H-polarized pulses create
the interaction between two dots by optically coupling the
bitrion state to two single-trion states in the dots. Then, the
shorter V polarized pulses couple the qubit sector to the
renormalized excited states and rotate the spins in a way
similar to the single-qubit operation.4 The operation can be
described in terms of dressed states C1–5. In the adiabatic
approximation for positive � their energies are

E1 = 0,

E2,3 =
1

2
�� � ��2 + 4V�t�2� ,

E4,5 =
1

2
�� � ��2 + 4V�t�2 + 8H�t�2� , �5�

which are sketched in Fig. 1�c�. Adiabatic pulses do not ex-
cite transitions to the split-off levels E2,4, and thus states
C2 ,C4 may be ignored. The H pulse is applied first and lifts
the degeneracy of E1,3 and E5 levels, but state C5 remains
orthogonal to the spin subspace and thus the initial spin state
is not transferred to it. The transformation of a spin state is
controlled only by the evolution of the states C1 and C3,
which can be written as

C1 = −
1
�2

	cos 	,0,− sin 	,0,cos 	
 ,

C3 = −
1
�2

	cos 
1,− sin 
1,0,sin 
1,− cos 
1
 , �6�

in terms of time-varying angles defined by

tan 	 =
V�t�

�2H�t�
, tan 2
1 =

2V�t�
�

. �7�

When the optical fields are switched off, C1 and C3 reduce to
1
�2

	1,0 ,0 ,0 , �1
 which belong to the spin sector, C2,4 to
single-trion states, and C5 to �t+ , t−�. The evolution of the
spin states �+,+� and �−,−� is controlled by the unitary trans-
formation e−i�1�1−�x�, where �x= �+,+��−,−�+ �−,−��+,+� and

�1 =
1

2
� E3��d , �8�

where �=1 is assumed. An excitation with �1=� /4 would
create a maximally entangled state from either �+,+� or
�−,−�. The operation is designed to minimize the effects of
relaxation from excited states and pulse imperfections. The
states C1 and C3 overlap within the qubit sector only. There-
fore, the initial state always returns back to the qubit sector at
the end of the operation. If a part of the population is trans-
ferred to C5, for example, by applying optical pulses simul-
taneously, the bitrion state will be left populated. However,
this can be minimized by detuning of the two-photon excita-
tion processes from the bitrion transitions. Also the popula-
tions of the excited state components of C1 and C3 are con-
trolled by the small parameters �V /��2 and �V /H�2. Below
we show that it is possible to maintain the total population of
the excited states below 10% for pulse durations of the order
of 1 ns. This makes the lifetime of C1 and C3 about ten times
longer than that of bare trions. For an arbitrary initial state, in
addition to two-spin rotation described above, the �+,−� state
acquires a phase e−i�2, where

�2 =
1

2
� 	� − ��2 + 8V��2
d , �9�

driven by the V fields coupling to the single trions �t+ ,−�
and �+, t−�. The optically induced transformation of an arbi-
trary two-spin state in the approximation of a strong Cou-
lomb coupling and a large splitting between the Zeeman sub-
levels is

Uid =�
e−i�1 cos �1 0 0 ie−i�1 sin �1

0 e−i�2 0 0

0 0 1 0

ie−i�1 sin �1 0 0 e−i�1 cos �1

� , �10�

where the phases �1,2 are defined by Eqs. �8� and �9�, respec-
tively.

Detuning the optical fields is required to avoid unintended
dynamics such as population transfer from �+,−� to the
single-trion states �t+ ,−� or �+, t−�. As an aid to the design of
this process, we gather in Fig. 2 all the transition energies for
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both polarizations. The input parameters are the energy lev-
els from the dot fabrication, � from dot placement, the Zee-
man splittings, and the central frequencies of the optical
pulses parametrized by single detuning � for simplicity. Cor-
rection operation constrains these parameters as

��t � � � �i, �i � � , �11�

which is physically reasonable. If the bitrion binding energy
� and the Zeeman splittings �i and �i are comparable to the
detuning �, off-resonant processes have the undesired effect
that the pulse sequence which excites the desired quantum
path also excites an path involving the single trion states
�+, t−� and �t+ ,−�, albeit off resonantly. This reduces the
two-spin rotation angle. This secondary process can be in-
vestigated with a five-level model similar to that of the reso-
nant path. All other off-resonant excitations just give rise to
phases in second-order perturbation. Including these effects
	Eq. �10�
 can thus be generalized as

U =�
e−i�11 cos � 0 0 ie−i�14 sin �

0 e−i�22 0 0

0 0 e−i�33 0

ie−i�41 sin � 0 0 e−i�44 cos �
� ,

�12�

where the phases �ij and � are defined in the Appendix.
Equation �12� is not a standard quantum gate. Its usefulness

for quantum information processing has been discussed in
Ref. 18. In general, the gate can be factorized as a product of
control phase gates and a SWAP gate. Starting with an ini-
tially spin-polarized �+,+� or �−,−� state, one can generate a
maximally entangled state with �=� /4. Moreover, a longer
excitation pulse should result in coherent two-spin oscilla-
tions.

To examine the effects of trion relaxation and off-resonant
pumping, we numerically integrate the equation of motion
for the 16-level density matrix including all transitions of
Fig. 2. In particular, we consider two vertically stacked InAs
QDs. We model the trion relaxation with a Lindblad form23

and assume that all transitions are independent with the total
relaxation rate �=1.2 �eV.13 The recombination rate of
electrons and holes in different dots, as well as their spin
decoherence rate,7 is negligible on the operation time scale.
We take the interdot difference of the two single-trion ener-
gies to be ��t=10 meV, and the electron and hole g factors
to be ge=−0.48 and gh=−0.31 �Ref. 12� for both dots. There
appears to be no experimental data on the bitrion binding
energy in the literature. Gerardot et al.16 obtained 4.56 meV
for binding energy of two excitons located in dots with a
vertical separation of 4.5 nm. Scheibner et al.17 measured
−0.3 meV for the shift of a negative-trion transition when a
second dot is occupied by a hole with respect to a bare tran-
sition �interdot distance is 6 nm�. These give us two disparate
values for the biexciton binding energy. From a simple ana-
lytical model11 we estimate �=0.8 meV for dots with verti-
cal separation 8 nm. To characterize the entanglement of the
output qubit state we use the concurrence C.26

The most crucial parameter of the operation is the bitrion
binding energy �. Figure 3 shows the concurrence of the
output state as a function of � for several different excita-
tions. The laser fields are weak enough to avoid unintentional
dynamics outside the 16-level system �not studied here�. We
find that a state with a concurrence C�0.85 can be gener-
ated if ��0.3 meV for a broad range of excitation param-
eters. The lower boundary for � is determined by the sym-
metry of the excitation scheme. One can see in Fig. 2 that if
� is comparable to the Zeeman splitting the fields V2

− and H2
+

will excite transitions from the Coulomb-split doublets, in
addition to the intended transitions. This effect is avoided if
we design a gate to swap �+,−� and �−,+� states. In the
latter case the concurrence of the gate remains C�0.85 for
��0.1 meV and smoothly decays to zero at �10 �eV.

The time required to entangle two spins is on the order of
fractions of a nanosecond for the whole range of �. It
is much shorter than the free-qubit decoherence time
��1 �s� at low temperatures determined by the interaction
with a nuclear spin bath.7 The main factors limiting the pre-
cision of an operation in this case are excitation of unin-
tended transitions and relaxation from the optically excited
states utilized in the scheme. Our approach allows precise
control for unintended excitations. Within the 16-level
model, if we assume an infinite relaxation time for the
single-trion and bitrion states, the population of the excited
states, after the optical fields are turned off, is less than 10−5.
Variations in pulse shapes or field intensities do not affect
this value. In this sense our adiabatic excitation scheme is
more robust compared to fast resonant operations utilizing
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FIG. 2. �Color online� Energies of allowed optical transitions
versus the optical frequencies �measured in energy units� for V po-
larization �upper figure� and H polarization �lower figure�. The thin
solid lines mark the transition energies in zero magnetic field. �tj is
the transition energy between a spin state and a trion state in dot j.
Their difference between the dots is shown as ��t=�t2−�t1.
� is the bitrion binding energy, thus making the transition energy
between the single and bitrion �tj −�. In a magnetic field, the
electron and hole Zeeman splittings � j

e and � j
h in dot j cause the

transition energy splitting 2� j =� j
e+� j

h in the V polarization and
2� j =� j

e−� j
h in the H polarization. The Zeeman split transitions

used in the quantum operation and off-resonant transitions are de-
noted by the thick solid lines and thick dashed lines, respectively.
The vertical arrows show the central frequencies of the optical
pulses and their detuning � from the corresponding transitions.
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pulse shaping. Although the effect of relaxation from the
excited states in our scheme is strongly suppressed by detun-
ing of optical fields, it is still noticeable and limits the con-
currence of a maximally entangled state. To further reduce
the relaxation effects one has to increase detunings of optical
fields and use QDs with greater separation between the en-
ergy levels �stronger Zeeman splitting and larger ��.

To characterize the precision of the designed operation we
define a fidelity of the gate18,27

F = ��0��U��†� fU���0� �13�

as it is described by our adiabatic analytical solution 	Eq.
�12�
 compared to numerical simulation of quantum dynam-
ics of the 16-level system that includes nonadiabaticity ef-
fects and relaxation. The bar over Eq. �13� is for average
over all initial states of two qubits and � f is a two-qubit
density matrix obtained in the numerical simulations. This is
the most objective method to analyze the theoretical model
short of having experimental data for comparison. The inset
of Fig. 3 show that the analytical model provides a good
description of the operation in the same range of �.

An example of an entangling two-qubit evolution is
given in Fig. 4 for two dots with the Coulomb coupling
�=0.3 meV. The optical pulses, centered at t=0, have been
optimized to obtain a final state with a maximal entangle-
ment from �+,+�. The output concurrence C0.87 is limited
by relaxation from the single-trion and bitrion states. How-
ever, because only a small part of population is transferred to
the excited states the entangling operation is weakly sensi-
tive to the trion relaxation rate, doubling it results in less

than 10% variation in the concurrence. Longer excitation
pulses result in Rabi oscillations of the pseudospin
	Fig. 4�b�
, which is consistent with the analytical model.
The decay time of the Rabi oscillations is on the order of 10
ns. The conventional three-dimensional �3D� tomography
plot 	Fig. 5
 shows the two-spin density matrix after the en-
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tangling gate is applied compared with the ideal one obtained
from Eq. �12�.

Measuring the entanglement of the output state in an ex-
periment requires a full-state tomography,28 which could be
rather difficult and a discussion of which is outside the scope
of this work. However partial indication is provided by the
oscillations between states �+,+� and �−,−� under longer ex-
citation 	Fig. 4�b�
. This effect can be probed by exciting
resonantly the population of a given spin state and then mea-
suring absorption or fluorescence. With two optical fields,
one can selectively excite a transition from a single two-spin
state to a bitrion state. For instance, optical fields V1

+ and H2
+

applied to the systems excite resonantly two-photon transi-
tion between �+,+� and �t+ , t−� states only 	see Fig. 1�a�
.
All other transitions are off resonant. Therefore, fluorescence
should be proportional to the population of �+,+�. To confirm
that the fields excite a two-photon transition one could mea-
sure two-photon cross correlations.16

In conclusion, we have developed an adiabatic approach
for the optically controlled entangling quantum operations
with two electron spins in semiconductor self-assembled
quantum dots. The scheme, utilizing the Coulomb interaction
between trions, is insensitive to material parameters, pulse
imperfections, and trion relaxation. We show that using four
optical fields a highly entangled two-spin state with the con-
currence C�0.85 can be prepared on the time scale of the
order of 1 ns.

This work was supported by ARO/NSA-LPS and DFG
under Grant No. BR 1528/5-1. We thank Dan Gammon,
Xiaodong Xu, and Yuli Lyanda-Geller for helpful discus-
sions.

APPENDIX

The phases in the transformation matrix 	Eq. �12�
 are
defined as follows:

� = �1 + �−,

�11 = �1 + �+ +� h1��d ,

�22 = �2 +� h2��d ,

�33 =� h3��d ,

�44 = �1 + �+ +� h4��d ,

�14 = �41 = �1 + �+ +� h+��d ,

where

�� = ��1 � �2�/2,

�1 = −� �� − �

2
−��� − ��2

4
+ H2�� + 2V2���d ,

�2 = −� �� − �

2
−��� − ��2

4
+ H2���d ,

and

h1�� = −
V2��

2� + �
−

H2��
� − � + 2�

,

h2�� =
V2��

2� − �
−

H2��
� − � − 2�

,

h3�� = −
H2��

� − � + 2�
−

H2��
� − � − 2�

,

h4�� = −
V2��

2� + �
+

V2��
2� − �

,

h��� = h1�� � h4�� .
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